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Abstract

Background: Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations
and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation
roadmap for hPSCs has not been achieved.

Results: We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to
profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC
early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial
cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the
gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naïve-like H9
cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development
are enriched in naïve-like H9. Functionally, naïve-like H9 show higher potency for differentiation into hematopoietic
lineages than primed cells.

Conclusions: Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights
that can be harnessed for optimization of differentiation protocols.

Keywords: Single-cell RNA-sequencing, Primed human pluripotent stem cell, Embryoid body, Naïve human pluripotent
stem cell

Background
Thomson et al. derived human pluripotent stem cells
(hPSCs) from human blastocysts for the first time in 1998
[1]. hPSCs have the capacity of self-renewal and multilineage
differentiation both in vitro and in vivo. These features of
hPSCs have provided remarkable promise in developmental
biology and regenerative medicine [2]. hPSCs can be used to
generate diverse cell-types from all three germ layers using
different differentiation protocols [3–7]. However, most

existing protocols suffer from low efficiency and functional
deficiency.
In vivo, fertilized mammalian eggs undergo multiple

cleavage divisions and form blastocysts (Fig. 1a). The
pre-implantation mouse epiblasts obtained from blasto-
cysts have the ground-state naïve pluripotency that can
be recapitulated in vitro in the form of embryonic stem
cells (ESCs) [8, 9]. Soon after implantation, epiblasts
become primed for lineage specification. In vitro, the
counterparts of primed epiblasts are termed epiblast
stem cells (EpiSCs), which are functionally and morpho-
logically distinct from ESCs. These two states of pluripo-
tent stem cells (i.e. ESCs and EpiSCs) are interchangeable
under specific conditions [9]. The study of this cellular-
state transition process will contribute to the understand-
ing of early development from pre-implantation epiblasts
to post-implantation epiblasts. Conventional hPSCs are
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considered as the primed state with the molecular and
functional identity of post-implantation lineage-primed
epiblasts. Several groups have established the naïve hPSCs,

which share several molecular features and functional
characteristics with naïve mPSCs and pre-implantation
epiblasts [10–16]. Following lineage specification, primed

Fig. 1 Overview of scRNA-seq analysis on hPSC early differentiation. a Process flow diagram of scRNA-seq analysis on hPSC early differentiation.
Single-cell samples of Naïve-like H9, Primed H9, and EBs were prepared by Fluidigm C1 system with HT IFCs for sequencing. Data analysis was
performed using Seurat and Monocle. b Violin plots show the distribution of transcripts and genes detected per cell. c t-SNE plot of single-cell
samples profiled. Naïve-like H9 cluster (blue circle), EB clusters (black circle), Primed H9 cluster (red circle)
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epiblasts develop into embryonic ectoderm and primitive
streak, which further develop into embryonic mesoderm
and endoderm. These three embryonic germ layers de-
velop into all embryonic tissues. Under proper in vitro
culture conditions, hPSCs can undergo spontaneous dif-
ferentiation and form a three-dimensional (3D) structure
called embryoid body (EB), which contains cells from all
three germ layers [17, 18]. The EB differentiation system
is a widely used model to study the early differentiation of
various lineage-specific progenitors, including cardiac
muscle [19], blood [20], liver [21], and neuron [22], etc.
hPSCs (both primed and naïve) and EBs are powerful
models to simulate early developmental process in vitro,
from pre-implantation epiblasts to lineage-committed
progenitors.
hPSC differentiation is a complex process. Flow cy-

tometry and immunostaining have been used to define
cell types in hPSC differentiation cultures. However,
these methods are limited by the number of fluorescent
probes that can be used at the same time; the heterogen-
eity of the hPSC differentiation process cannot be fully
resolved. Single-cell RNA-sequencing (scRNA-seq), first
released in 2009 [23], has provided a promising alterna-
tive. During the past few years, the technology has been
vastly improved by the development of numerous in-
novative approaches [24, 25], including C1 (SMARTer)
[26], SMART-seq2 [27], CEL-seq [28], Drop-seq [29],
InDrop [30], 10X Genomics [31], etc. To date, single-cell
technology has been used to study cellular heterogeneity
in a wide range of systems [24], including the hierarchy
of tumor cells [32, 33], tissue and organs [34–37], devel-
oping embryos [38, 39] and in vitro differentiation sys-
tems [40–42].
We use the upgraded Fluidigm C1 system with opti-

mized high-throughput integrated fluidics circuits (HT
IFCs) to construct the early differentiation trajectories
of various lineage-specific progenitors derived from
hPSCs and to reveal the interaction between these pre-
cursor cells in EB differentiation system. We find key
TFs and signaling pathways that direct the differenti-
ation process. We show that liver may be involved in
regulating the differentiation of other tissue cells
through cell–cell interactions. We also use the C1
scRNA-seq platform to study the primed-to-naïve tran-
sition process and to reveal the differences in gene
expression profiles between Primed and Naïve-like H9.
Combined with the analysis of EB differentiation, genes
related to hemogenic endothelium development and
MAPK-ERK1/2 signaling pathway are enriched in Naïve-
like H9 but not in Primed H9. Functionally, Naïve-like H9
show the differentiation bias to endothelial-hematopoietic
lineages. Taken together, we construct a comprehensive
single-cell level differentiation roadmap for hPSCs and
offer new insights into early embryonic lineages that can

guide the establishment and optimization of more sophis-
ticated differentiation system.

Results
scRNA-seq analysis of hPSCs and EBs
In order to systematically map hPSCs early differenti-
ation pathways, Naïve-like H9, Primed H9, and EBs were
prepared as single-cell samples for sequencing using
Fluidigm C1 system with HT IFCs (Fig. 1a). This system
can be used to analyze up to 800 cells at a time and
detect an average of 5000 genes per cell. A major advan-
tage of this technology is the balance of throughput and
resolution. After sequencing and data processing, we got
high-quality transcriptomic data from 4822 single cells,
including 2636 EB samples (683 day 4 EBs and 1953 day
8 EBs), 1491 Naïve-like H9 samples, and 695 Primed H9
samples. The scRNA-seq data had high read depth,
which can map to 5000 genes for most of the single-cell
samples (Fig. 1b and Additional file 1: Figure S1a); and
Naïve-like H9 datasets show weak batch effect of Fluidigm
C1 system (Additional file 1: Figure S1b). The random dif-
ferentiation of EBs causes the batch effect (Additional
file 1: Figure S1c). We used Seurat to perform principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) analysis [43]. Seurat divided
our samples into four main clusters, including two EB
clusters (EB-ectodetm and EB-mesendoderm), one Primed
H9 cluster, and one Naïve-like H9 cluster (Fig. 1c). hPSCs
(i.e. Naïve-like and Primed H9) have relative homogeneity.
EB cells show significant heterogeneity, which indicated
well spontaneous differentiation of hPSCs and provided a
variety of samples for Monocle pseudotime analysis [44].
To reveal the gene expression dynamics and key regula-
tors of hPSC early differentiation, we used Seurat and
Monocle to analyze these data.

Mapping cellular landscape for early embryonic lineages
Spontaneous differentiation of EBs exhibit heteroge-
neous patterns of differentiated cell types (Fig. 1c). We
extracted single cells from EBs and Primed H9 for fur-
ther analysis (Fig. 2a). According to the expression of
differential genes, day 4 EBs were divided into three
clusters, including progenitor cell-2, progenitor cell-10,
and progenitor cell-11. Day 4 EBs have weak heterogen-
eity. Progenitor cell-2 does not highly express lineage-
related genes; progenitor cell-10 may be related with
neural cell differentiation; progenitor cell-11 may be re-
lated with mesendoderm differentiation (Fig. 2b and c).
We defined 11 clusters as different progenitor cells in
day 8 EBs. We identified six major types of progenitor
cells with distinct gene expression patterns, including
muscle cells (cluster 3, 4, 12, 13), stromal cells (cluster
8), endothelial cells (cluster 15), neural cells (cluster 6, 7,
9), epithelial cells (cluster 14), and liver cells (cluster 5)

Han et al. Genome Biology  (2018) 19:47 Page 3 of 19



(Fig. 2a and b). Clusters 3, 4, 12, and 13 are associated
with high expression of muscle progenitor cell markers
such as HAND1, APLNR, and ACTC1 [45], and there-
fore these clusters are annotated as muscle cells (Fig. 2).

Cluster 8 is annotated as stromal cells for the expression
of LUM, KLF6, and COL5A1 [46]. Though muscle cell
and stromal cell clusters exhibit shared gene expression
profiles, collagen genes (e.g. COL3A1, COL5A1, COL5A2,

Fig. 2 scRNA-seq analysis reveals lineage progenitors in EBs. a t-SNE plots of Primed H9 and EBs (day 4 EBs and day 8 EBs). We defined three
progenitor clusters in day 4 EBs, including progenitor cell-2, progenitor cell-10, and progenitor cell-11. We defined six progenitor clusters in day 8
EBs, including muscle cell, liver cell, neural cell, stromal cell, epithelial cell, and endothelial cell. b Heatmap shows the expression pattern of top 15
differential genes in each progenitor cell. Differential genes of each cell type are listed in Additional file 4: Table S3. c Violin plots show the
expression level distributions of marker genes across cell types. Cell types are represented by different colors in (a), (b), and (c)
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COL1A1, and COL1A2) are enriched in stromal cell clus-
ter (Fig. 2b and c) [46]. Cluster 15 is annotated as endo-
thelial cells for the high expression of KDR, GNG11, and
ECSCR (Fig. 2b and c) [47]. Clusters 6, 7, and 9 are anno-
tated as neural cells for the high expression of OTX2,
PTN, and FZD3 (Fig. 2b and c), which are important for
the development of neural system [48–50]. Cluster 14 is
annotated as epithelial cells for the high expression of
PDPN,TFAP2C, and DMD [36, 51]. Cluster 5 is annotated
as liver cells for the high expression of AFP,TTR, and FGB
[52–54]. We also found specific surface markers to separ-
ate these progenitor cells from EBs, such as CD34 and
PROCR (CD201), which can enrich endothelial cells from
EBs (Additional file 1: Figure S2a and S2b). As a further
validation, we found that genes specifically expressed in
each cell type were enriched for the expected Gene Ontol-
ogy (GO) terms (Additional file 1: Figure S2c) [55]. For ex-
ample, genes that are specifically expressed in muscle cell
cluster are significantly enriched for skeletal system devel-
opment (p = 7.06E-07); specific genes of neural cell cluster
are significantly enriched for positive regulation of neuro-
blast proliferation (p = 1.86E-04) and neuronal stem cell
population maintenance (p = 2.17E-04); specific genes of
liver cell cluster are significantly enriched for very-low-
density lipoprotein particle (p = 4.29E-08) and lipoprotein
metabolic process (p = 5.15E-08); specific genes of endo-
thelial cell cluster are significantly enriched for angiogen-
esis (p = 1.90E-12), positive regulation of endothelial cell
proliferation (p = 4.40E-05), and hemopoiesis (p = 0.0045).
These analyses strongly indicate that our cell-type assign-
ments are accurate.
Both cluster neural cell and muscle cell consist of

several sub-clusters. According to the specific gene ex-
pression pattern, neural cell cluster was further divided
into three subsets, including neural progenitor-PODXL-6,
neural progenitor-OTX2–7, and neural progenitor-ERBB3–
9 (Fig. 3a and b and Additional file 1: Figure S3a–d). Sub-
clusters of neural cells are different types of cells. Neural
progenitor-PODXL-6 may be related with cerebral cortex
development, because of the enriched expression of
PODXL [56], DRAXIN [57, 58], and TUBB2A [59]. Neural
progenitor-OTX2–7 is enriched for RAX, SIX3, and OTX2,
which are highly expressed in retinal-pigmented epithelium
(RPE) [60]. Genes related with forebrain development are
enriched in neural progenitor-OTX2–7 (Additional file 1:
Figure S4a). RPE is derived from forebrain [61], so neural
progenitor-OTX2–7 may be related with the RPE develop-
ment. Neural progenitor-ERBB3–9 exhibits specific expres-
sion of known neural crest (NC) cell markers (ERBB3,
SOX9, and EDNRA) [62–64]. So neural progenitor-ERBB3–
9 may be related with the NC cell development (Additional
file 1: Figure S4a).
Cluster muscle cell consists of four sub-clusters, includ-

ing muscle-LDHA-3, muscle-FBN2–4, muscle-CRYAB-

13, and muscle-GABRP-12. These sub-clusters have spe-
cific gene expression pattern and gene expression distribu-
tion (Fig. 3c and d and Additional file 1: Figure S3e–h).
Muscle-LDHA-3 is enriched for LDHA, POSTN, and
IGF2 [65]; muscle-FBN2–4 is enriched for FBN2,
NCAM1, and SERPINE2 [66]; muscle-CRYAB-13 is
enriched for CRYAB, COL1A1, and LGALS1 [67, 68];
muscle-GABRP-12 is enriched for GABRP, CXCL12, and
TRIML2 [69]. Combined with the differentiation trajec-
tory, we think these muscle sub-clusters were divided for
both different cell types and different differentiation stages
(Additional file 1: Figure S4c). Skeletal muscle cell differ-
entiation related genes are enriched in muscle-FBN2–4
and muscle-CRYAB-13; angiogenesis related genes are
enriched in muscle-GABRP-12; glycolytic process and
insulin receptor signaling pathway related genes are
enriched in muscle-LDHA-3 (Additional file 1: Figure
S4b). The sub-clusters analysis indicated the diversity of
differentiation direction in neural and muscle cell clusters.

Construction of hPSC early differentiation trajectory
We used Monocle [44] to order single cells through EB
differentiation and construct the whole lineage differen-
tiation trajectory with a tree-like structure (Fig. 4a). We
found two branches following EB differentiation, includ-
ing an ectoderm branch and a mesendoderm (mesoderm
and endoderm) branch. The ectoderm branch only con-
sists of cells from neural cell cluster. The mesendoderm
branch consists of cells from the muscle cell, endothelial
cell, stromal cell, liver cell, and epithelial cell clusters.
This differentiation trend is similar to the development
in vivo that primed epiblasts develop into embryonic
ectoderm and primitive streak (embryonic mesoderm
and endoderm). It indicates that the differentiation tra-
jectory of whole EBs can simulate the development in
vivo. We used a specific heatmap to show the gene ex-
pression dynamics of these two branches (Fig. 4b and
Additional file 1: Figure S5a). From pre-branch (Primed
H9) to cell fate 1 (ectoderm), we found some gene clus-
ters with specific expression pattern, including II (cluster
2), III (cluster 3), and V (cluster 5). We defined the
genes cluster VI (cluster 6) and I (cluster 1), which are
highly expressed in Primed H9 and cell fate 2 (mesendo-
derm), respectively. We performed GO enrichment ana-
lysis to reveal the different functions of these gene
clusters (Additional file 1: Figure S5b). Nervous system
development related GO terms are significantly enriched
in cluster II, III, and V. In neural differentiation, cells get
neural characteristics at the early stage of differentiation.
Cluster I is related with kidney development, heart de-
velopment, skeletal system development, angiogenesis,
and lung cell differentiation.
The differentiation trend of EBs is similar to the develop-

ment in vivo, because 3D EBs have complex cell adhesions
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Fig. 3 Sub-clusters of neural and muscle progenitors. a, c Heatmaps show the differential gene expression pattern of each sub-cluster from neural
cell cluster (a) and muscle cell cluster (c). Top 20 differential genes of each sub-cluster are shown. Differential genes of each sub-cluster are listed
in Additional file 5: Table S4. b, d Violin plots show the expression distributions of specific marker genes across sub-clusters: neural sub-clusters (b)
and muscle sub-clusters (d). Cell types are represented by different colors
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Fig. 4 EBs simulate the early development in vivo. a Differentiation trajectory of EBs constructed by Monocle. b Heatmap shows the gene expression
dynamics during EB differentiation. Genes (row) are clustered and cells (column) are ordered according to the pseudotime development. Genes are
listed in Additional file 6: Table S5. Gene clusters I–VI were selected for further analysis. c Heatmap shows the mean number of cell–cell interactions. LV
liver cell, EP epithelial cell, MS muscle cell, SM stromal cell, EN endothelial cell, NU neural cell. List of ligand-receptor pairings (column) and cell–cell
pairings (row) are listed in Additional file 7: Table S6
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and paracrine signaling system, which can establish various
interactions among different cell types [70]. Based on the
expression of ligands or complementary receptors on every
cell, we calculated the number of interactions among differ-
ent cell types and showed potential cell-cell interactions in
a network (Additional file 1: Figure S6) [71]. These ligand-
receptor pairings suggest extensive crosstalk among six
types of progenitor cells (Fig. 4c). The one-to-many and
many-to-one relationships exist between receptors and
ligands. For example, liver cell receptor CLEC2B can bind
ligand CLEC3A from muscle cells, stromal cells, endothelial
cells, and neural cells; liver ligand SHBG can bind to recep-
tor CLDN4 on all types of cells, which indicate the import-
ant roles of liver cells in the differentiation of other cell
types. These ligand-receptor pairings may reveal the cell–
cell interactions during the development in vivo.
The whole lineage differentiation trajectory cannot re-

veal the single-cell gene expression dynamics of each
progenitor cell, so we constructed differentiation trajec-
tory for each cell type with day 8 EBs (Fig. 5a). Tran-
scription factors (TFs) play a key role in the regulation
of development and differentiation. Based on the dy-
namics of their expression patterns, the TFs associated
with each differentiation trajectory were divided into
three clusters (I, II, III) (Fig. 5b). Cluster I TFs are highly
expressed at the initial stage of differentiation. Primed
H9, the common starting point of differentiation, highly
express cluster I TFs (e.g. SOX2, PRDM14, and ZIC2)
[72]. Cluster II TFs are highly expressed at the terminal
stage of differentiation, so these TFs indicate the charac-
teristics of each progenitor cell, including cluster endo-
thelial cell (e.g. GATA2 and TAL1) [73], cluster muscle
cell (e.g. HAND1 and ZFHX3) [74], cluster stromal cell
(e.g. KLF6 and MAF) [75], cluster liver cell (e.g. EOMES
and SOX7) [76], cluster epithelial cell (e.g. SOX9 and
FOXP1) [77], and cluster neural cell (e.g. PAX3 and
TFAP2B) [78]. Cluster I and II TFs indicate that the start
points and end points of our differentiation trajectories
are correct. Cluster III TFs are highly expressed at the
middle stage of differentiation, including cluster endo-
thelial cell (e.g. HOXA1 and TFAP2A), cluster muscle
cell (e.g. CDX1 and MEF2C), cluster stromal cell (e.g.
PAX3 and SALL1), cluster liver cell (e.g. MEIS2 and
PRRX1), cluster epithelial cell (e.g. ARID5B and CASZ1),
and cluster neural cell (e.g. PKNOX2 and TBX3). These
TFs are the candidate genes to control the differentiation
of each progenitor cell. We also performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis to reveal the major differential signaling
pathways involved in the differentiation, including clus-
ter endothelial cell (e.g. MAPK and Hippo), cluster
muscle cell (e.g. Prolactin and Estrogen), cluster stromal
cell (e.g. Wnt and Hippo), cluster liver cell (e.g. Prolactin
and cGMP-PKG), cluster epithelial cell (e.g. Hippo and

AMPK), and cluster neural cell (e.g. Hippo and cGMP-
PKG) (Additional file 1: Figure S7). These differentiation
trajectories show us the key TFs and signaling pathways
that related to the differentiation process and may pro-
vide evidences for the optimization of the differentiation
system in vitro.

Construction of naïve hPSC reset trajectory
We reset Primed H9 into Naïve-like H9 by RSeT, a com-
mercial medium based on NHSM formula [10]. Through
bulk RNA-seq, we found the state of Naïve-like H9 was
stable after 15–20 days domestication in RSeT media
(Fig. 6a). We confirmed the naïve state via morphology,
immunofluorescence of surface markers and pluripotent
transcription factors, quantitative PCR (qPCR) of naïve
and primed genes [79, 80], and flow cytometry of surface
markers [81] (Additional file 1: Figure S8).
We performed pseudotime analysis to study cell state

transition process (from day 0 to day 20) using scRNA-
seq data (Fig. 6b). Day 10 RSeT samples are at the inter-
mediate state followed Primed H9. Day 20 RSeT samples
are divided into two branches (cell fate 1 and cell fate 2).
The RSeT culture process causes the heterogeneity of
the Naïve-like H9. The expression pattern shows that
only cell fate 2 branch directs to the naïve state with
high expression of pluripotent TFs (e.g. POU5F1,
NANOG, and PRDM14) (Fig. 6c and d). Cell fate 1
branch directs to a differentiation state with gradual
downregulation of pluripotent TFs (e.g. POU5F1 and
NANOG) and upregulation of lineage specifier genes (e.
g. HAND1, SNAI2, and PAX6). Though these lineage
specifier genes are upregulated at the middle stage in
both branches, they are downregulated at the terminal
stage of cell fate 2. The differential expression dynamics
of lineage specifier genes may help us to understand the
reset process.
We extracted cell fate 2 branch as Naïve-like H9 to

compare gene expression pattern between Naïve-like
and Primed H9 at single-cell level (Fig. 7a). Though ex-
pression distributions of pluripotent TFs (e.g. POU5F1,
NANOG, and SOX2) are similar (Fig. 7b and Additional
file 1: Figure S9a), there are significant differences in
gene expression signatures between Naïve-like and
Primed H9 (Fig. 7c). Primed genes (e.g. ZIC2, ZIC5,
DNMT3B, DUSP6, THY1, and CD24) are enriched in
Primed H9 (Fig. 7d). NODAL, LEFTY2, GDF3, KLF4,
DNMT3L, IL6ST, PRDM14, DPPA2, and TDGF1 are
highly expressed in Naïve-like H9 as previously reported
(Fig. 7e) [79, 80]. These results confirmed the “naïve”
state of our Naïve-like H9. These gene expression char-
acteristics also exist in Naïve-like H1 (Additional file 1:
Figure S10a–c and S10f ). We performed surface marker
analysis to show the candidate surface genes, which can
distinguish naïve hPSCs from primed hPSCs (Additional
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Fig. 5 Differentiation trajectories of progenitor cells derived from hPSC. a Differentiation trajectories of progenitor cells constructed by Monocle.
b Heatmaps show TFs expression dynamics during differentiation. Genes are listed in Additional file 8: Table S7. Genes (row) are clustered and
cells (column) are ordered according to the pseudotime development. In each heatmap, TFs are divided into three clusters (I, II, and III). Specific
TFs are listed on the right to show their expression dynamics
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Fig. 6 Construction of naïve hPSC reset trajectory by pseudotime analysis. a PCA analysis of bulk RNA-seq shows the correlation of hPSCs with
different states. Reset H9 was sampled at day 3, day 6, day 10, day 15, and day 20. b H9 reset trajectory constructed by Monocle. c Heatmap
shows TFs expression dynamics during the cellular-state transition process. Genes (row) are clustered and cells (column) are ordered according to
the pseudotime development. Genes are listed in Additional file 9: Table S8. d TFs expression dynamics. Full line: cell fate 1; Imaginary line: cell fate 2
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file 1: Figure S9b). The surface markers of Primed H9
include CUZD1, KCNQ2, CLDN10, PODXL, etc.; the
surface markers of Naïve-like H9 include CNTNAP2,
FZD5, etc.

We performed GO enrichment analysis and estab-
lished GO term diagram of Naïve-like and Primed H9
(Additional file 1: Figure S9c). Primed H9 have high
expression of major histocompatibility complex I related

Fig. 7 Comparison of Primed and Naïve-like H9 at single-cell level. a scRNA-seq t-SNE plot of Primed and Naïve-like H9. Naïve-like H9 was selected
from day 20 Reset H9. b Violin plots show the expression level distributions of pluripotent transcription factors (POU5F1, NANOG, and SOX2). c Heatmap
shows the distinct gene expression pattern of Primed and Naïve-like H9. Top 20 differential genes are shown. Genes used are listed in Additional file 10:
Table S9. d–f Violin plots show the expression level distributions of primed genes (d), naïve genes (e), and MAPK related genes (f)
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genes as previously reported [72]. And genes related
with nervous system (ectoderm) development are also
enriched in Primed H9. In Naïve-like H9, genes related
with gastrulation and endoderm development and
MAPK signaling pathway are enriched. GO term diagram
of Naïve-like H1 also shows MAPK signaling pathway
enrichment (Additional file 1: Figure S10 g). Interestingly,
MAPK signaling pathway is also enriched in the differenti-
ation trajectory of endothelial cell cluster, which derives
from mesendoderm (Additional file 1: Figure S7). We
checked the expression distribution of germ layer genes in
both H9 and H1. Genes related with mesendoderm
development (T, FGF4, MIXL, LEFTY1, EOMES, etc. [40])
are highly expressed in Naïve-like hPSCs (Fig. 8a and
Additional file 1: Figure S10e); genes related with nervous
development (ALCAM [82], OLFM1 [83], SIGMAR1 [84],
etc.) are highly expressed in Primed hPSCs (Fig. 8b and
Additional file 1: Figure S10d). We suspected that Naïve-
like hPSCs have the differentiation bias to tissue cells re-
lated with endothelial-hematopoietic lineages [85, 86]. We
used hematopoietic differentiation system to compare the
differentiation ability between Naïve-like and Primed H9.
The percentage of CD34+CD45+ cells and CD34+CD43+

cells are higher in Naïve-like H9, which generates more
colony-forming units (CFUs) than Primed H9 as well (Fig.
8c and d). It suggests that Naïve-like H9 has better
potency for hematopoietic differentiation. We checked the
protein level of MAPK (p38, JNK, and ERK1/2) through
western blot, and only the ERK1/2 is highly detected in
Naïve-like H9 (Fig. 8e), which is consistent with the single
cell transcriptome analysis. The high expression of FOS
(the substrates of MAPK-ERK1/2) [87] and ID1 (the
downstream target of MAPK-ERK1/2) are also detected in
Naïve-like H9 (Fig. 7f) [88], which do not affect the pluri-
potency of Naïve-like H9 (Fig. 7b and Additional file 1: Fig-
ure S8). FOS can induce the expression of hematopoietic
genes [89]. Furthermore, ID1 is a helix-loop-helix inhibitor
and may promote the hematopoietic differentiation [90]
like the helix-loop-helix inhibitor TAL1 does [91].

Discussion
In this study, we performed the analysis of scRNA-seq
data from a total of 4822 single cells generated from EBs
and hPSCs (Fig. 9). Through constructing the early dif-
ferentiation trajectories of various progenitors identified
in EBs, we revealed the key TFs and signaling pathways
that direct the differentiation of distinct cell types.
Moreover, we constructed the cell–cell interaction net-
work of these cell types and indicated the key roles of
liver cells in the differentiation of other cell types. We
further reprogramed Primed H9 into Naïve-like H9 to
study the cellular-state transition process. We found that
genes related with MAPK-ERK1/2 signaling pathway are
enriched in endothelial-hematopoietic development and

Naïve-like H9. Functionally, Naïve-like H9 show higher
potency for differentiation into the hematopoietic line-
ages. These results provide valuable information for the
optimization of differentiation protocols.
The scRNA-seq platform we used is Fluidigm C1 sys-

tem with the HT IFCs [26]. The old version of IFCs can
only capture 96 cells at most [40, 92], so cell sorting or
other enrichment strategies are usually performed before
scRNA-seq for the recovery of rare cell types. However,
HT IFCs can efficiently analyze thousands of single cells
without prior enrichment from heterogeneous systems
such as EB differentiation (Fig. 2a).
In contrast to monolayer differentiation, EB differenti-

ation system provides 3D structure to establish complex
cell adhesions and paracrine signaling, which promote
the differentiation and morphogenesis similar to the na-
tive tissue development [70]. The interactions between
different cell types are important for the development
and differentiation. Liver is the essential site for the early
hematopoietic development in the embryo stage [85].
Cardiomyocytes and endothelial cell were reported im-
portant for the differentiation of liver in EB differenti-
ation [21]. We used the random EB differentiation
system to generate various tissue cells of three germ lin-
eages for our hPSC early differentiation trajectory con-
struction (Fig. 9). We found complex interactions
among different cell types (Fig. 4c and Additional file 1:
Figure S6). Interestingly, liver cells build specific interac-
tions with other cell types using specific ligands and re-
ceptors in EBs. The functions of these interactions
should be verified in further studies. It may indicate the
important role of liver cells in the differentiation of
other cell types.
We used the scRNA-seq to study the reset trajectory of

Naïve-like H9. In the tree-like trajectory, we found two
branches, one directs to success and the other directs to
failure (Fig. 6b). After comparing gene expression dynam-
ics, we revealed the cell state transition process, from
Primed to Naïve-like H9. We found that some lineage spe-
cifier genes (PAX6, HAND1, et al.) are upregulated at the
middle stage (Fig. 6d). In the success branch, those lineage
specifier genes are downregulated before the terminal
stage. However, in the failure branch, the upregulation is
persistent, which lead to differentiation but not the naïve
state. The balance of lineage specifier genes can keep the
pluripotency of stem cell [93]. We therefore suspected
that in the cell state transition process Primed H9 is re-
programed to a pluripotent intermediate state with the
balance of lineage specifiers (Fig. 9). When this balance is
broken, the intermediate state cells lose their pluripotency
and differentiate. Understanding the mechanisms that
control the balances of these lineage specifier genes may
help us to regulate the pluripotency of hPSCs and
optimize differentiation protocols.
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Fig. 8 (See legend on next page.)
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Differentiation bias of different hPSCs might be har-
nessed for better lineage differentiation protocols. Here,
we found better potency of hematopoietic differentiation
in Naïve-like H9. MAPK-ERK1/2 related genes are
highly expressed in Naïve-like H9 but not in Primed H9
(Fig. 7f and Fig. 8e and Additional file 1: Figure S9c).
We therefore suspect that MAPK-ERK1/2 contributes to
the hematopoietic differentiation bias of Naïve-like H9
(Fig. 9). Though LIF is the key cytokine to keep the
“naïve” state of hPSCs [10], it can also activate the
MAPK-ERK1/2 signaling pathway [94], which is involved
in the differentiation of hPSCs towards endothelial
lineages (Additional file 1: Figure S7), and hematopoietic
development [87]. The commercial naïve medium RSeT
contain the MAPK-ERK1/2 inhibitor (such as PD0325901
[10]). The inhibitor may lead to perturbation of MAPK-
ERK1/2 pathway. When the inhibitor is removed and

differentiation media are added, hemogenic fate is en-
hanced for Naïve-like hPSC culture.

Conclusion
In this study, we used scRNA-seq to map the early
differentiation of hPSCs. We identified various lineage-
specific progenitor cells and constructed the differenti-
ation trajectories by pseudotime analysis. The gene
expression dynamics offer new insights into molecular
pathways of early embryonic lineages that can be har-
nessed for optimization of differentiation protocols.

Methods
Cell culture and differentiation
H9 and H1 human ES cells were maintained in mTeSR™1
media (STEMCELL Technologies) on tissue culture plates
coated with Matrigel (BD Bioscience) routinely [95]. H9

(See figure on previous page.)
Fig. 8 Hematopoietic differentiation bias of Naïve-like H9. a, b Violin plots show the expression level distributions of mesendoderm genes (T,
FGF4, MIXL, GSC, FOXA2, EOMES, GATA4, and LEFTY1) (a) and neural genes (ALCAM, OLFM1, SIGMAR1, DPYSL3, CPNE1, KCNQ2, BEX1, and STMN3) (b).
c Flow cytometry analysis of hematopoietic progenitors derived from hPSCs. Significant difference was assessed by the t-test. ***p < 0.001, **p <
0.01, *p < 0.05. d The morphology and number of hematopoietic CFUs. Scale bars = 100 μm. e Western blot analysis of MAPK (ERK1/2, JNK, and
P38) in naïve and primed H9

Fig. 9 Snapshot of scRNA-seq profiling on progenitor cells and hPSCs. Differentiation trajectories of six progenitor cells derived from Primed H9
show key signaling pathways and TFs involved in the differentiation. The balance of lineage specifiers decides the reset result of Primed H9.
MAPK-ERK1/2 signaling pathway related genes are enriched in Naïve-like H9, which may contribute to the hematopoietic differentiation bias
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and H1 were reset into a naïve-like state by RSeT™ media
(STEMCELL Technologies) following the instruction [81,
96]. We generated EBs by clone suspension. EBs were dif-
ferentiated in DMEM/F12 (GIBCO) supplemented with
20% FBS (GIBCO), 50 U/mL penicillin/streptomycin
(GIBCO), 2 mM L-Glutamine (GIBCO), 1 × non-essential
amino acids, and 100 μM ß-mercaptoethanol (Sigma). In
brief, H9 was digested using 0.5 mg/mL Dispase (Invitro-
gen) for 30 min. Then cell clumps suspended in differenti-
ation media were seeded into an Ultra-Low attachment 6
well plate (Corning). After four days or eight days of cul-
ture, EBs were harvested and digested into single-cell sus-
pension in 3 × 105 cells/mL using TrypLE (GIBCO). We
did not use cell sorting or other enrichment strategies
before single-cell capture. The hematopoietic differentiation
of hPSCs was performed using STEMdiff Hematopoietic
Kit (STEMCELL Technologies) following the instructions.
At day 12, cells were analyzed with flow cytometry. CD34+

cells were enriched with EasySep™ CD34 positive selection
kit (StemCell Technologies) for CFU assays.

Colony-forming unit (CFU) assays
CFU assays were performed with MethoCult™ H4034
Optimum methylcellulose-based media (StemCell Tech-
nologies) following manufacturer’s instructions. In brief,
3 mL MethoCult™ media with 1 × 104/mL CD34+ cells
and penicillin-streptomycin were added into each
35 mm low adherent plastic dish. Colonies were counted
and identified after 10–14 days of incubation.

Flow cytometry analysis of cell phenotype
Cells suspended in 100 μL of PBS were incubated with
antibodies at 4 °C for 30 min. The samples were mea-
sured on BD Fortessa and analyzed by FlowJo software
(Tree Star). Antibodies used in our study were listed:
anti-Human CD34 (BioLegend, Pacific Blue, clone
581), anti-human CD34 (BioLegend, PE, clone 581),
anti-human CD201 (BioLegend, APC, clone RCR-401),
anti-Human CD43 (BioLegend, APC, clone 10G7),
anti-Human CD45 (BioLegend, FITC, clone HI30),
anti-Human CD90 (BD Pharmingen, APC, clone
5E10), and CD24 (BioLegend, PE, clone ML5).

Immunofluorescence staining and confocal image
analysis
Cells were seeded into glass-bottom culture dishes
(NEST, 35/15 mm) coated with Matrigel. Cultured cells
were fixed in 4% paraformaldehyde at room temperature
for 30 min. Then permeabilized treatment was per-
formed at room temperature for 30 min with PBS + 0.2%
TritonX-100. Cells were blocked with PBS + 1% BSA +
4% FBS + 0.4% TritonX-100 at room temperature for
1 h. Then cells were incubated with primary antibodies,
diluted in PBS + 0.2% BSA + 0.1% TritonX-100, at 4 °C

overnight. Cells were incubated with AlexaFluor second-
ary antibodies (Invitrogen) for 1 h at room temperature.
Then cells were incubated with DAPI for 5 min at room
temperature. After the second round of fixation, cells
were ready for imaging. Olympus IX81-FV1000 was used
to collect immunofluorescence images and FV10-ASW
2.1 Viewer was used to process images. The primary
antibodies used in our study were listed in Additional
file 2: Table S1.

Western blot analysis
Whole-cell protein were isolated from Primed H9 and
Naïve-like H9. Protein samples were incubated with the fol-
lowing primary antibodies in 5%BSA: anti-ERK (Servicebio,
Wuhan, China, GB13003–1), anti-JNK (Epitomics, 3496-s),
anti-P38 (ABCAM, ab31828), and anti-β-actin (Servicebio,
Wuhan, China, GB13001–1). Secondary antibodies were
HRP-linked goat anti-mouse, goat anti-rabbit (Servicebio,
Wuhan, China, GB23303). Blots were developed using ECL
(Servicebio, Wuhan, China, G2014). The primary anti-
bodies used in our study were listed in Additional file 2:
Table S1.

Reverse transcription (RT) and qPCR analysis
Total RNA prepared with EasyPure RNA Kit (Transgen)
was reverse transcribed into complementary DNA
(cDNA) by TransScript All-in-One First-Strand cDNA
Synthesis SuperMix for qPCR kit (Transgen). The di-
luted cDNA was used as temples in qPCR (ChamQ
SYBR qPCR Master Mix-Q311 (Vazyme)). The qPCR
platform we used was LightCycler 480 (Roche) and data
were analyzed by the ΔΔCt method. The primers used
in our study were listed in Additional file 3: Table S2,
including the reference gene (ACTB).

Single-cell capture and scRNA-seq library preparation
We used Fluidigm C1 system and C1 high-throughput
integrated fluidics circuits (HT IFCs) to perform the
single-cells capture and library construction as instruc-
tion described. A total of 4000–8000 cells were loaded
onto a medium-sized (10–17 μm) HT IFCs. The effi-
ciency of capture was measured under the microscope.
The capture sites without cell or with more than one cell
were marked and excluded from further analysis. C1 sys-
tem captured and converted all polyadenylated messen-
ger RNA (mRNA) into cDNA with the cell-specific
barcodes. After reverse transcription and preamplifica-
tion, cDNA was prepared as samples for next-generation
sequencing using library tagmentation and 3’end enrich-
ment. Samples harvested from HT IFCs were used to
create libraries for Illumina sequencing with Illumina
Nextera XT DNA Library kit.
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Bulk RNA-seq library construction
We used mRNA Capture Beads (VAHTS mRNA-seq v2
Library Prep Kit for Illumina, Vazyme) to extract mRNA
from total RNA. PrimeScript™ Double Strand cDNA
Synthesis Kit (TaKaRa) was used to synthesize double-
stranded cDNA from purified polyadenylated mRNA
templates. We used TruePrep DNA Library Prep Kit V2
for Illumina (TaKaRa) to prepare cDNA libraries for Illu-
mina sequencing.

Sequencing data analysis
The sequenced reads were mapped against the reference
GRCh38 using STAR v2.5.2a [97]. scRNA-seq expression
data, quantified by counts via featureCounts v1.5.1 [98],
were analyzed with Seurat v2.0.1 (PCA, Cluster, t-SNE
and cluster) [43]. In brief, the Seurat object was gener-
ated from digital gene expression matrices. The param-
eter of “Filtercells” is nGene (2000 to 8800) and
transcripts (-Inf to 6e + 05). In the standard pre-
processing workflow of Seurat, we selected 8706 variable
genes for following PCA. Then we performed cell cluster
and t-SNE. Fifteen principal components were used in
cell cluster with the resolution parameter set at 1.5.
Marker genes of each cell cluster were outputted for GO
and KEGG analysis, which were used to define the cell
types. Cell clusters were annotated with the information
of cell types and germ layers. Digital gene expression
matrices with annotations from Seurat were analyzed by
Monocle v2.3.6 (pseudotime analysis) [44]. TFs from
AnimalTFDB [99] and surface genes [100] were used to
filter the gene lists. The cell–cell interactions were con-
structed by igraph v1.12 as previously reported [71]. The
count of cell–cell interactions was based on the ligands-
receptors pairings [101]. We used DAVID [55] to per-
form GO and KEGG analysis. GO terms were visualized
by REVIGO [102] and Cytoscape [103]. Bulk RNA-seq
data, quantified by FPKM via RSEM v0.4.6 [104], were
analyzed with DEseq2 v1.14.1 [105].
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