RTv Reverse Transcriptase

Version 23.1

Product Description

RTv Reverse Transcriptase is obtained from the M-MLV Reverse Transcriptase by directed genetic engineering, which has excellent reverse transcription efficiency, specificity, sensitivity and thermal stability. It is applicable for Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP). With the new generation of hot start technology, the reaction system can be prepared at room temperature. Moreover, the enzyme activity is inhibited at temperatures below 45°C, thus improving specificity.

Components

Components	RV101-01 (1,500 U)
■ RTv Reverse Transcriptase (15 U/µI)	100 µl
■ 10 × IsothermalAmp Buffer	1 ml
MgSO₄ (100 mM)	1 ml

Storage

Store at -30 ~ -15°C and transport at ≤0°C.

Applications

It is applicable for Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP).

Source

A recombinant E. coli strain carrying modified M-MLV (H-) reverse transcriptase gene.

Unit Definition

One unit (U) is defined as the amount of enzyme that incorporates 1 nmol of dTTP into acid-insoluble material in 20 min at 50°C, with Poly(rA)·Oligo (dT) as the template/primer.

Self-prepared Materials

Reagents: Bst DNA Polymerase Large Fragment, RNase inhibitor, dNTP Mix (10 mM each), FIP/BIP Primers, F3/B3 Primers, LoopF/LoopB Primers, RNase-free ddH_2O_o

Instruments: qPCR instrument, PCR instrument or water bath.

Notes

For research use only. Not for use in diagnostic procedures.

• Prevent RNase contamination

Please keep the experiment area clean; Wear disposable gloves and masks; Use RNase-free consumables such as centrifuge tubes and pipette tips.

Experiment Process

Take RT- LAMP as an example:

- 1. Thaw components on ice. Vortex for 10 sec to mix thoroughly before use, then centrifuge briefly to the bottom of the tube.
- 2. Follow the table below to prepare the reaction system. The template should be added in the last step.

Components	Volume	Final Concentration	
10 × IsothermalAmp Buffer	2.5 µl	1 ×	
MgSO ₄ (100 mM)	1.5 µl	6 mM (total 8 mM)	
dNTP Mix (10 mM each)	3.5 µl	1.4 mM each	
FIP/BIP Primers (100 μM)	0.4 μl each	1.6 μM each	
F3/B3 Primers (100 µM)	0.05 µl each	0.2 μM each	
LoopF/LoopB Primers (100 μM)	0.2 μl each	0.8 μM each	
RNase Inhibitor (40 U/µI)	0.5 μΙ	0.8 U/µI	
RTv Reverse Transcriptase (15 U/µI)	0.5 µl	0.3 U/µl	
Bst DNA Polymerase Large Fragment (8 U/µI)	1.0 µl	0.32 U/µI	
RNA Template*	1.0 - 5.0 µl		
RNase-free ddH₂O	up to 25 μl		

^{*} It is recommended to add the template last to ensure the reliability of the results.

- ▲ The concentration of Mg²⁺ can be adjusted between 6 10 mM.
- ▲ If the experiments requires an anti-contamination system, it is recommended that add dUTP (Vazyme #P033) to a final concentration of 1.4 mM, and UDG enzyme to a final concentration of 0.04 U/µl.
- ▲ If the amount of primers is small, it is recommended to premix the primers first.
- ▲ It is recommended to prepare reagents and templates in different areas to avoid contamination.
- 3. Vortex to mix thoroughly, then centrifuge briefly to the bottom of the tube.
- 4. Add template DNA. The final volume of the reaction system should be 25 μ l.
- 5. Vortex to mix thoroughly, then centrifuge briefly to the bottom of the tube.
- 6. Incubate at $60 \sim 65^{\circ}$ C for 30 60 min.

FAQ & Troubleshooting

♦ How to design and screen primers for loop-mediated isothermal amplification?

Please refer to http://primerexplorer.jp/e/ for primer design. Version 5 is recommended.

Log in to http://primerexplorer.jp/lampv5e/index.html to download the manual.

For preliminary screening, please refer to the manual. The optimal primer need to be verified by experiments.

♦ How to detect the amplification product?

Both dye-based method and probe-based method can be used to detect amplification products.